Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Bull Entomol Res ; : 1-12, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602247

RESUMO

Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.

2.
Glob Chang Biol ; 30(4): e17290, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651789

RESUMO

Soil organic nitrogen (N) mineralization not only supports ecosystem productivity but also weakens carbon and N accumulation in soils. Recalcitrant (mainly mineral-associated organic matter) and labile (mainly particulate organic matter) organic materials differ dramatically in nature. Yet, the patterns and drivers of recalcitrant (MNrec) and labile (MNlab) organic N mineralization rates and their consequences on ecosystem N retention are still unclear. By collecting MNrec (299 observations) and MNlab (299 observations) from 57 15N tracing studies, we found that soil pH and total N were the master factors controlling MNrec and MNlab, respectively. This was consistent with the significantly higher rates of MNrec in alkaline soils and of MNlab in natural ecosystems. Interestingly, our analysis revealed that MNrec directly stimulated microbial N immobilization and plant N uptake, while MNlab stimulated the soil gross autotrophic nitrification which discouraged ammonium immobilization and accelerated nitrate production. We also noted that MNrec was more efficient at lower precipitation and higher temperatures due to increased soil pH. In contrast, MNlab was more efficient at higher precipitation and lower temperatures due to increased soil total N. Overall, we suggest that increasing MNrec may lead to a conservative N cycle, improving the ecosystem services and functions, while increasing MNlab may stimulate the potential risk of soil N loss.


Assuntos
Nitrogênio , Microbiologia do Solo , Solo , Solo/química , Nitrogênio/metabolismo , Plantas/metabolismo , Concentração de Íons de Hidrogênio , Nitrificação , Ciclo do Nitrogênio
3.
Environ Sci Technol ; 58(14): 6215-6225, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38546713

RESUMO

Globally, agricultural soils account for approximately one-third of anthropogenic emissions of the potent greenhouse gas and stratospheric ozone-depleting substance nitrous oxide (N2O). Emissions of N2O from agricultural soils are affected by a number of global change factors, such as elevated air temperatures and elevated atmospheric carbon dioxide (CO2). Yet, a mechanistic understanding of how these climatic factors affect N2O emissions in agricultural soils remains largely unresolved. Here, we investigate the soil N2O emission pathway using a 15N tracing approach in a nine-year field experiment using a combined temperature and free air carbon dioxide enrichment (T-FACE). We show that the effect of CO2 enrichment completely counteracts warming-induced stimulation of both nitrification- and denitrification-derived N2O emissions. The elevated CO2 induced decrease in pH and labile organic nitrogen (N) masked the stimulation of organic carbon and N by warming. Unexpectedly, both elevated CO2 and warming had little effect on the abundances of the nitrifying and denitrifying genes. Overall, our study confirms the importance of multifactorial experiments to understand N2O emission pathways from agricultural soils under climate change. This better understanding is a prerequisite for more accurate models and the development of effective options to combat climate change.


Assuntos
Gases de Efeito Estufa , Solo , Solo/química , Dióxido de Carbono/análise , Temperatura , Agricultura , Óxido Nitroso/análise
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124151, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492464

RESUMO

Herein, we fabricate a melamine modified metal organic framework-199 composite (MOF-199@melamine), of which the structure is affected by the dynamics of the guest H2O molecule with significant color change. It realizes the visualized quantitative detection of water in a variety of organic solvents within 30 s. Moreover, DMF restored the original structure by replacing H2O molecules, realizing the regeneration of the materials. On this basis, PTFE-MOF-199@melamine test paper is developed to portably detect water content in organic solvents (maximum 0 %-98 % (v/v) water content) and ambient relative humidity (11-85 %). The test paper can be recycled four times with a regeneration rate higher than 90 %. The results are expected to solve the problems of existed electrochemical or fluorescence strategy such as the complicated operation process and signal output/reading system.

5.
Environ Sci Technol ; 58(6): 2786-2797, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38311839

RESUMO

Understanding the underlying mechanisms of soil microbial nitrogen (N) utilization under land use change is critical to evaluating soil N availability or limitation and its environmental consequences. A combination of soil gross N production and ecoenzymatic stoichiometry provides a promising avenue for nutrient limitation assessment in soil microbial metabolism. Gross N production via 15N tracing and ecoenzymatic stoichiometry through the vector and threshold element ratio (Vector-TER) model were quantified to evaluate the soil microbial N limitation in response to land use changes. We used tropical soil samples from a natural forest ecosystem and three managed ecosystems (paddy, rubber, and eucalyptus sites). Soil extracellular enzyme activities were significantly lower in managed ecosystems than in a natural forest. The Vector-TER model results indicated microbial carbon (C) and N limitations in the natural forest soil, and land use change from the natural forest to managed ecosystems increased the soil microbial N limitation. The soil microbial N limitation was positively related to gross N mineralization (GNM) and nitrification (GN) rates. The decrease in microbial biomass C and N as well as hydrolyzable ammonium N in managed ecosystems led to the decrease in N-acquiring enzymes, inhibiting GNM and GN rates and ultimately increasing the microbial N limitation. Soil GNM was also positively correlated with leucine aminopeptidase and ß-N-acetylglucosaminidase. The results highlight that converting tropical natural forests to managed ecosystems can increase the soil microbial N limitation through reducing the soil microbial biomass and gross N production.


Assuntos
Ecossistema , Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Microbiologia do Solo , Florestas , Carbono , Fósforo/metabolismo
6.
Appl Environ Microbiol ; 90(3): e0223723, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38315008

RESUMO

The stability of microbial communities, especially among core taxa, is essential for supporting plant health. However, the impacts of disease infection on the stability of rhizosphere fungal core microbiome remain largely unexplored. In this study, we delved into the effects of root rot infestation on the community structure, function, network complexity, and stability of Sanqi fungal core microbiomes, employing amplicon sequencing combined with co-occurrence network and cohesion analyses. Our investigation revealed that root rot disease led to a decrease in the α-diversity but an increase in the ß-diversity of the Sanqi fungal core microbiomes in the rhizosphere. Notably, Ilyonectria, Plectosphaerella, and Fusarium emerged as indicator species in the rhizosphere core microbiome of root rot-infected Sanqi plants, while Mortierella predominated as the dominant biomarker taxa in healthy soils. Additionally, root rot diminished the complexity and modularity of the rhizosphere networks by reducing the metrics associated with nodes, edges, degrees, and modularity. Furthermore, root rot resulted in a reduction in the proportion of negative connections in the network and the negative/positive cohesion of the entire core fungal microbiome. Particularly noteworthy was the observation that root rot infection destabilized the rhizosphere core fungal microbiome by weakening the negative connectivity associated with beneficial agents. Collectively, these results highlight the significance of the negative connectivity of beneficial agents in ensuring the stability of core microbial community.IMPORTANCERoot rot disease has been reported as the most devastating disease in the production process of artificial cultivated Sanqi ginseng, which seriously threatens the Sanqi industry. This study provides valuable insights into how root rot influences microbial relationships within the community. These findings open up opportunities for disease prevention and the promotion of plant health by regulating microbial interactions. In summary, the research sheds light on the ecological consequences of root rot on rhizosphere fungal microbiomes and offers potential strategies for managing soil-borne diseases and enhancing plant health.


Assuntos
Medicamentos de Ervas Chinesas , Micobioma , Microbiologia do Solo , Rizosfera , Fungos , Raízes de Plantas/microbiologia , Solo/química
7.
Environ Int ; 184: 108491, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340405

RESUMO

Copper (Cu) is a key cofactor in ammonia monooxygenase functioning responsible for the first step of nitrification, but its excess availability impairs soil microbial functions and plant growth. Yet, the impact of Cu on nitrogen (N) cycling and process-related variables in cropland soils remains unexplored globally. Through a meta-analysis of 1209-paired and 319-single observations from 94 publications, we found that Cu (Cu addition or Cu-polluted soil) reduced soil potential nitrification by 33.8% and nitrite content by 73.5% due to reduced soil enzyme activities of nitrification and urease, microbial biomass content, and ammonia oxidizing archaea abundance. The response ratio of potential nitrification decreased with increasing Cu concentration, soil total N, and clay content. We further noted that soil potential nitrification inhibited by 46.5% only when Cu concentration was higher than 150 mg kg-1, while low Cu concentration (less than 150 mg kg-1) stimulated soil nitrate by 99.0%. Increasing initial soil Cu content stimulated gross N mineralization rate due to increased soil organic carbon and total N, but inhibited gross nitrification rate, which ultimately stimulated gross N immobilization rate as a result of increased the residence time of ammonium. This resulted in a lower ratio of gross nitrification rate to gross N immobilization rate, implying a lower potential risk of N loss as evidenced by decreased nitrous oxide emissions with increasing initial soil Cu content. Our analysis offers initial global evidence that Cu has an important role in controlling soil N availability and loss through its effect on N production and consumption.


Assuntos
Cobre , Solo , Carbono , Produtos Agrícolas , Nitrogênio , Oxirredução , Microbiologia do Solo
8.
Sci Total Environ ; 920: 171006, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369137

RESUMO

Understanding the patterns and controls regulating nitrogen (N) transformation and its response to N enrichment is critical to re-evaluating soil N limitation or availability and its environmental consequences. Nevertheless, how climatic conditions affect nitrate dynamics and the response of gross N cycling rates to N enrichment in forest soils is still only rudimentarily known. Through collecting and analyzing 4426-single and 769-paired observations from 231 15N labeling studies, we found that nitrification capacity [the ratio of gross autotrophic nitrification (GAN) to gross N mineralization (GNM)] was significantly lower in tropical/subtropical (19%) than in temperate (68%) forest soils, mainly due to the higher GNM and lower GAN in tropical/subtropical regions resulting from low C/N ratio and high precipitation, respectively. However, nitrate retention capacity [the ratio of dissimilatory nitrate reduction to ammonium (DNRA) plus gross nitrate immobilization (INO3) to gross nitrification] was significantly higher in tropical/subtropical (86%) than in temperate (54%) forest soils, mainly due to the higher precipitation and GNM of tropical/subtropical regions, which stimulated DNRA and INO3. As a result, the ratio of GAN to ammonium immobilization (INH4) was significantly higher in temperate than in tropical/subtropical soils. Climatic rather than edaphic factors control heterotrophic nitrification rate (GHN) in forest soils. GHN significantly increased with increasing temperature in temperate regions and with decreasing precipitation in tropical/subtropical regions. In temperate forest soils, gross N transformation rates were insensitive to N enrichment. In tropical/subtropical forests, however, N enrichment significantly stimulated GNM, GAN and GAN to INH4 ratio, but inhibited INH4 and INO3 due to reduced microbial biomass and pH. We propose that temperate forest soils have higher nitrification capacity and lower nitrate retention capacity, implying a higher potential risk of N losses. However, tropical/subtropical forest systems shift from a conservative to a leaky N-cycling system in response to N enrichment.


Assuntos
Compostos de Amônio , Nitrogênio , Nitrogênio/análise , Nitratos/análise , Solo , Florestas
9.
Phytomedicine ; 126: 155208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387275

RESUMO

BACKGROUND: Pulmonary premetastatic niche (PMN) formation plays a key role in the lung metastasis of hepatocellular carcinoma (HCC). Hypoxia promotes the secretion of tumor-derived exosomes (TDEs) and facilitates the formation of PMN. However, the mechanisms remain unexplored. METHODS: TDEs from normoxic (N-TDEs) or hypoxic (H-TDEs) HCC cells were used to induce fibroblast activation in vitro and PMN formation in vivo. Oleanolic acid (OA) was intragastrically administered to TDEs-preconditioned mice. Bioinformatics analysis and drug affinity responsive target stability (DARTS) assays were performed to identify targets of OA in fibroblasts. RESULTS: H-TDEs induced activation of pulmonary fibroblasts, promoted formation of pulmonary PMN and subsequently facilitated lung metastasis of HCC. OA inhibited TDEs-induced PMN formation and lung metastasis and suppressed TDEs-mediated fibroblast activation. MAPK1 and MAPK3 (ERK1/2) were the potential targets of OA. Furthermore, H-TDEs enhanced ERK1/2 phosphorylation in fibroblasts in vitro and in vivo, which was suppressed by OA treatment. Blocking ERK1/2 signaling with its inhibitor abated H-TDEs-induced activation of fibroblasts and PMN formation. H-TDEs-induced phosphorylation of ERK1/2 in fibroblasts touched off the activation NF-κB p65, which was mitigated by OA. In addition, the ERK activator C16-PAF recovered the activation of ERK1/2 and NF-κB p65 in H-TDEs-stimulated MRC5 cells upon OA treatment. CONCLUSION: The present study offers insights into the prevention of TDEs-induced PMN, which has been insufficiently investigated. OA suppresses the activation of inflammatory fibroblasts and the development of pulmonary PMN by targeting ERK1/2 and thereby has therapeutic potential in the prevention of lung metastasis of HCC.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Neoplasias Pulmonares , Ácido Oleanólico , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Ácido Oleanólico/metabolismo , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Exossomos/metabolismo , Hipóxia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo
10.
J Biomater Sci Polym Ed ; 35(5): 628-656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38284334

RESUMO

In this study, the pH-responsive API-CMCS-SA (ACS) polymeric nanoparticles (NPs) based on 1-(3-amino-propyl) imidazole (API), stearic acid (SA), and carboxymethyl chitosan (CMCS) were fabricated for the effective transport of curcumin (CUR) in liver cancer. CUR-ACS-NPs with various degrees of substitution (DS) were employed to prepare through ultrasonic dispersion method. The effect of different DS on NPs formation was discussed. The obtained CUR-ACS-NPs (DSSA=12.4%) had high encapsulation rate (more than 85%) and uniform particle size (186.2 ± 1.42 nm). The CUR-ACS-NPs showed better stability than the other groups. Drug release from the CUR-ACS-NPs was pH-dependent, and more than 90% or 65% of CUR was released in 48 h in weakly acid medium (pH 5.0 or 6.0, respectively). Additionally, the CUR-ACS-NPs increased the intracellular accumulation of CUR and demonstrated high anticancer effect on HepG2 cells compared with the other groups. CUR-ACS-NPs prolonged the retention time of the drug, and the area under the curve (AUC) increased significantly in vivo. The in vivo antitumor study further revealed that the CUR-ACS-NPs exhibited the capability of inhibiting tumor growth and lower systemic toxicity. Meanwhile, CUR, CUR-CS-NPs, and CUR-ACS-NPs could be detected in the evaluated organs, including tumor, liver, spleen, lung, heart, and kidney in distribution studies. Among them, CUR-ACS-NPs reached the maximum concentration at the tumor site, indicating the tumor-targeting properties. In short, the results suggested that CUR-ACS-NPs could act a prospective drug transport system for effective delivery of CUR in cancer treatment.


Assuntos
Quitosana , Curcumina , Neoplasias Hepáticas , Nanopartículas , Humanos , Curcumina/química , Quitosana/química , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias Hepáticas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Tamanho da Partícula
11.
Sci Total Environ ; 915: 170020, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38224895

RESUMO

Stover mulching in no-tillage farming has been widely proposed as an optimized agricultural management practice to increase soil carbon storage and improve fertilizer nitrogen (N) use efficiency in current agroecosystems. However, the regulation of soil internal gross N transformation dynamics on NO3--N leaching potential in response to long-term conservation tillage practices is still lacking. Here, based on a combination of 15N-tracing incubation and in situ monitoring experiments, we investigated the effect of 9-year no-tillage and maize stover mulching on the vertical migration of fertilizer-derived NO3--N into a deeper soil profile and the associated gross NO3--N transformation dynamics in the Mollisol of Northeast China. The net positive NO3--N production rates (varied from 3.14 to 6.22 mg N kg-1 d-1) were observed across all management practices in the studied Mollisol, indicating a relatively high NO3--N leaching potential in the cropland of Northeast China, which was further confirmed by an average of 7.4 % fertilizer-derived NO3--N being vertically transferred to the 80-100 cm soil layer after a complete maize growing period. Compared with traditional ridge tillage, long-term stover mulching in no-tillage farming significantly reduced total NO3--N production by decreasing autotrophic nitrification while simultaneously enhancing total NO3--N consumption by stimulating nitrate reduction and microbial NO3--N immobilization, revealing a markedly reduction of net NO3--N production in the no-tillage agroecosystem. Therefore, converting traditional ridge tillage toward no-tillage with maize stover mulching can effectively decrease fertilizer-derived NO3--N leaching amounts and thus formulate targeted mitigation strategies for sustainable agriculture in Mollisols of Northeast China.

12.
Glob Chang Biol ; 30(1): e17003, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37943245

RESUMO

Identifying tipping points in the relationship between aridity and gross nitrogen (N) cycling rates could show critical vulnerabilities of terrestrial ecosystems to climate change. Yet, the global pattern of gross N cycling response to aridity across terrestrial ecosystems remains unknown. Here, we collected 14,144 observations from 451 15 N-labeled studies and used segmented regression to identify the global threshold responses of soil gross N cycling rates and soil process-related variables to aridity index (AI), which decreases as aridity increases. We found on a global scale that increasing aridity reduced soil gross nitrate consumption but increased soil nitrification capacity, mainly due to reduced soil microbial biomass carbon (MBC) and N (MBN) and increased soil pH. Threshold response of gross N production and retention to aridity was observed across terrestrial ecosystems. In croplands, gross nitrification and extractable nitrate were inhibited with increasing aridity below the threshold AI ~0.8-0.9 due to inhibited ammonia-oxidizing archaea and bacteria, while the opposite was favored above this threshold. In grasslands, gross N mineralization and immobilization decreased with increasing aridity below the threshold AI ~0.5 due to decreased MBN, but the opposite was true above this threshold. In forests, increased aridity stimulated nitrate immobilization below the threshold AI ~1.0 due to increased soil C/N ratio, but inhibited ammonium immobilization above the threshold AI ~1.3 due to decreased soil total N and increased MBC/MBN ratio. Soil dissimilatory nitrate reduction to ammonium decreased with increasing aridity globally and in forests when the threshold AI ~1.4 was passed. Overall, we suggest that any projected increase in aridity in response to climate change is likely to reduce plant N availability in arid regions while enhancing it in humid regions, affecting the provision of ecosystem services and functions.


Assuntos
Compostos de Amônio , Ecossistema , Solo , Nitratos , Nitrogênio/análise , Microbiologia do Solo
13.
Environ Sci Pollut Res Int ; 31(4): 5132-5143, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112876

RESUMO

The extensive use and discharge of toluidine blue have caused serious problems to the water environment. As a green biocatalyst, laccase has the ability to decolorize the dyes, but it is limited by poor reusability and low stability. Metal-organic frameworks (MOFs) are a good platform for enzyme immobilization. However, due to the weak dispersion of MOFs, the enzyme activity is inevitably inhibited. Herein, we proposed to use graphene oxide (GO) as the dispersion medium of mesoporous ZIF-8 to construct MZIF-8/GO bi-carrier for laccase (FL) immobilization. On account of the narrower bandgap energy of FL@MZIF-8/GO (4.07 eV) than that of FL@MZIF-8 (4.69 eV), electron transport was enhanced which later increased the catalytic activity of the immobilized enzyme. Meanwhile, the improved hydrophilicity characterized by contact angle and full infiltration time further promoted the efficiency of the enzymatic reaction. Benefiting from such regulatory effects of GO, the composite showed excellent storage stability and reusability, as well as multifaceted enhancements including pH, thermal, and solvent adaptation. On the basis of the characterized synergistic effect of adsorption and degradation, FL@MZIF-8/GO was successfully applied to the degradation of toluidine blue (TB) with a removal rate of 94.8%. Even in actual treated wastewater, the highest removal rate still reached more than 80%. Based on the inner mechanism analysis and the universality study, this material is expected to be widely used in the degradation of pollutants in real water under complex environmental conditions.


Assuntos
Grafite , Lacase , Cloreto de Tolônio , Lacase/metabolismo , Enzimas Imobilizadas/química , Água
14.
Nat Food ; 4(12): 1075-1089, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053005

RESUMO

Knowledge-based nitrogen (N) management provides better synchronization of crop N demand with N supply to enhance crop production while reducing N losses. Yet, how these N management practices contribute to reducing N losses globally is unclear. Here we compiled 5,448 paired observations from 336 publications representing 286 sites to assess the impacts of four common knowledge-based N management practices, including balanced fertilization, organic fertilization, co-application of synthetic and organic fertilizers, and nitrification inhibitors, on global ecosystem N cycling. We found that organic and balanced fertilization rather than N-only fertilization stimulated soil nitrate retention by enhancing microbial biomass, but also stimulated soil N leaching and emissions relative to no fertilizer addition. Nitrification inhibitors, however, stimulated soil ammonium retention and plant N uptake while reducing N leaching and emissions. Therefore, integrative application of knowledge-based N management practices is imperative to stimulate ecosystem N retention and minimize the risk of N loss globally.


Assuntos
Compostos de Amônio , Nitrogênio , Nitrogênio/análise , Ecossistema , Solo , Plantas , Fertilizantes/análise
15.
PeerJ Comput Sci ; 9: e1632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077544

RESUMO

With the promotion of energy transformation, the utilization ratio of electrical power is progressively rising. Since electrical power is challenging to store, real-time production and consumption become imperative, imposing significant demands on the dependability and operational efficiency of electrical power apparatus. Suppose the load distribution among multiple transformers within a transformer network exhibits inequality. In such instances, it will amplify the total energy consumption during the voltage conversion process, and local, long-term high-load transformer networks become more susceptible to failures. In this article, we scrutinize the matter of transformer energy utilization in the context of electricity transmission within grid systems. We propose a methodology grounded on genetic algorithms to optimize transformer energy usage by dynamically redistributing loads among diverse transformers based on their operational status monitoring. In our experimentation, we employed three distinct approaches to enhance energy efficiency. The experimental findings evince that this approach facilitates swifter attainment of the optimal power level and diminishes the overall energy consumption during transformer operation. Moreover, it exhibits a heightened responsiveness to fluctuations in power demand from the electrical grid. Experimental results manifest that this technique can truncate monitoring time by 27% and curtail the overall energy consumption of the distribution transformer network by 11.81%. Lastly, we deliberate upon the potential applications of genetic algorithms in the realm of power equipment management and energy optimization issues.

16.
Front Public Health ; 11: 1273443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035306

RESUMO

COVID-19 is an acute respiratory infectious disease caused by SARS-CoV-2. It was first reported in Wuhan, China in December 2019 and rapidly spread globally in early 2020, triggering a global pandemic. In December 2022, China adjusted the dynamic COVID-zero strategy that lasted for three years. The number of positive cases in China increased rapidly in the short term. Weihai was also affected during this period. We conducted genomic surveillance of SARS-CoV-2 variants in Weihai during this period, hoping to understand the changes in the genomic characteristics of SARS-CoV-2 before and after the adjustment of the epidemic policy. In this study,we collected SARS-CoV-2 positive samples from March 2022 to March 2023 in Weihai and performed SARS-CoV-2 whole genome sequencing on these samples using next-generation sequencing technology. we obtained a total of 704 SARS-CoV-2 whole genome sequences, and selected 581 high-quality sequences for further analysis. The analysis results showed that from March 2022 to November 2022, before the adjustment of epidemic policy, the COVID-19 cases in Weihai were mainly from four local clusters,which were caused by four variants, including BA.2,BA.1.1,P.1.15 and BA.5.2.1. Phylogenetic analysis showed that: In the same cluster,the sequences between each other were highly homologous, and the whole genome sequence were almost identical. After December 2022, the epidemic policy was adjusted, BF.7 and BA.5.2 became the dominant variants in Weihai, consistent with the main domestic strains in China during the same period. Phylodynamic analysis showed that BF.7 and BA.5.2 had a large amount of genetic diversities in December, and the effective population size of BF.7 and BA.5.2 also showed explosive growth in December. In conclusion, we reported the composition and dynamic trend of SARS-CoV-2 variants in Weihai from March 2022 to March 2023. We found that there have been significant changes in the variants and expansion patterns of SARS-CoV-2 before and after the adjustment of epidemic policies. But the dominant variants in Weihai were the same as the SARS-CoV-2 variants circulating globally at the same time and we found no persistently dominant variants or new lineages during this period.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Filogenia , COVID-19/epidemiologia , Genômica , China/epidemiologia , Pandemias
17.
ACS Omega ; 8(42): 39896-39906, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901504

RESUMO

The potential geochemical information in the produced water of coalbed methane (CBM) wells is conducive to the exploration and development of CBM in the case that the produced water is primitive formation water. A total of 58 produced water samples collected from 13 CBM wells in the Daxing Mine, Tiefa Basin, were investigated. Ionic composition tests and stable isotope analysis were conducted to explore the geochemical characteristics and sources of produced water as well as the method for determining whether the produced water is primitive formation water. The results suggest that the fracking fluid for CBM stimulations is the main factor affecting the ion change of the produced water in the initial stage of drainage. The concentrations of Cl- and Ca2+ + Mg2+ could be taken as the indices to identify whether the produced water is primitive formation water. When the Cl- concentration is lower than 20 mEq/L and the Ca2+ + Mg2+ concentration is lower than 1 mEq/L, the produced water is close to the pristine formation water. Biogenic methanogenic activity may result in a high δ13CDIC and high concentrations of HCO3- in the pristine formation water in the Tiefa Basin. The data of δD and δ18O in the study area suggest that the formation water might come from atmospheric precipitation, which is later affected by evaporation and the water-rock reaction. The hydrogen isotope values in the produced water derived from the lower coal group display a substantial elevation compared to those from the upper coal group. This disparity in the hydrogen isotope composition presents an opportunity to utilize δD in produced water as a tool for distinguishing the formation water between these two groups.

18.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37816138

RESUMO

Immune evasion and metabolism reprogramming have been regarded as two vital hallmarks of the mechanism of carcinogenesis. Thus, targeting the immune microenvironment and the reprogrammed metabolic processes will aid in developing novel anti-cancer drugs. In recent decades, herbal medicine has been widely utilized to treat cancer through the modulation of the immune microenvironment and reprogrammed metabolic processes. However, labor-based herbal ingredient screening is time consuming, laborious and costly. Luckily, some computational approaches have been proposed to screen candidates for drug discovery rapidly. Yet, it has been challenging to develop methods to screen drug candidates exclusively targeting specific pathways, especially for herbal ingredients which exert anti-cancer effects by multiple targets, multiple pathways and synergistic ways. Meanwhile, currently employed approaches cannot quantify the contribution of the specific pathway to the overall curative effect of herbal ingredients. Hence, to address this problem, this study proposes a new computational framework to infer the contribution of the immune microenvironment and metabolic reprogramming (COIMMR) in herbal ingredients against human cancer and specifically screen herbal ingredients targeting the immune microenvironment and metabolic reprogramming. Finally, COIMMR was applied to identify isoliquiritigenin that specifically regulates the T cells in stomach adenocarcinoma and cephaelin hydrochloride that specifically targets metabolic reprogramming in low-grade glioma. The in silico results were further verified using in vitro experiments. Taken together, our approach opens new possibilities for repositioning drugs targeting immune and metabolic dysfunction in human cancer and provides new insights for drug development in other diseases. COIMMR is available at https://github.com/LYN2323/COIMMR.


Assuntos
Antineoplásicos , Neoplasias , Plantas Medicinais , Humanos , Neoplasias/metabolismo , Antineoplásicos/uso terapêutico , Linfócitos T , Medicina Herbária , Microambiente Tumoral
19.
Opt Express ; 31(17): 28078-28088, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710870

RESUMO

We report on the realization of long-haul and high-precision millimeter-wave (mm-wave) transfer through a fiber-optic link based on balanced dual-heterodyne phase noise detection. The balanced dual-heterodyne detection is achieved by detecting the fiber phase noise superimposed two intermediate frequency (IF) signals without requiring a local synchronization signal and its output is used to compensate the fiber-induced phase noise by actuating the frequency of the one optical carrier. The proposed scheme can effectively get rid of the effect of the local reference, largely simplifying the configuration at the local site. Additionally, we model and experimentally study the noise contribution coming from the out-of-band, which can be effectively suppressed to the below of the system noise floor with a fractional frequency instability of 1.9 × 10-17 at 10,000 s by designing and implementing a high-precision temperature control module with a peak-to-peak temperature fluctuation of no more than 0.002 K. We experimentally demonstrate that a 100 GHz mm-wave signal to be transmitted over a 150 km fiber-optic link can achieve the fractional frequency instabilities of less than 3.4 × 10-14 at 1 s and 3.5 × 10-17 at 10,000 s.

20.
Microbiol Spectr ; : e0338022, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698393

RESUMO

Continuous cultivation of medicinal plants can disrupt the rhizosphere's microbial community. There is still a need to know about the beneficial bacterial community, their putative drivers, and the potential functions they may have. This study used different growth years of Sanqi ginseng (Panax notoginseng) with root rot to look at the beneficial microbial community structure, the function of microbial carbon source utilization, and the function of rhizosphere soil metabolism. The beneficial bacterial community changed and the relative abundance of beneficial agents was suppressed significantly with the successive Sanqi ginseng plantings. The carbon source utilization capacity and diversity increased significantly, whereas three autotoxin degradation-related pathways (biosynthesis of other secondary metabolites, metabolism of terpenoids and polyketides, and xenobiotics biodegradation and metabolism) were downregulated considerably with planting year extended. The changes in the beneficial agents were driven by the shifts in phenolic acid profiles, and the decline of beneficial microbes led to the loss of microbial autotoxin degradation functions. Overall, these results provide insight into beneficial microbes, microbial functions, phenolic acids, and their interactions, and these findings are essential for maintaining healthy and sustainable cultivation of Sanqi ginseng. IMPORTANCE Sanqi ginseng is a valuable perennial Chinese herb with various benefits for human health. However, continuous cultivation causes a high incidence of root rot disease, which leads to decreased yield and serious economic losses and ultimately impedes the sustainable development of Chinese medicine production. The significance of this study is to reveal the pattern of changes in beneficial bacteria and their related functions in root rot diseased rhizosphere with the successive planting years of Sanqi ginseng. This study found that the decline of beneficial bacterial agents mediated by phenolic acid profiles appears to be associated with the loss of microbial autotoxin degradation functions. This result may have new implications for deciphering the causes of Sanqi ginseng's continuous cropping obstacles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...